Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance.

نویسندگان

  • Jeffrey Melkonian
  • Long-Xi Yu
  • Tim L Setter
چکیده

Maize seedling water relations and abscisic acid (ABA) levels were measured over 24 h of root chilling (5.5 degrees C). At 2.5 h into chilling, leaf ABA levels increased by 40x and stomatal conductance (g(s)) decreased to 20% compared with prechill levels. Despite a rapid g(s) response to root chilling, leaf water potential (Psi(L)) of chilled seedlings decreased to -2.2 MPa resulting in a complete loss of turgor potential (psi(p)). Ineffective g(s) control early in chilling resulted from decreased root hydraulic conductance (L(r)) due to increased water viscosity and factor(s) intrinsic to the roots. After 24 h chilling, Psi(L) and psi(p) of chilled seedlings recovered to control levels due to stomatal control of transpiration and increased L(r). The impact of the temporal changes in g(s) and L(r) on maize seedling water relations during chilling was analysed using a simple, quantitative hydraulic model. It was determined that g(s) is critical to stabilizing Psi(L) at non-lethal levels in chilled seedlings at 2.5 h and 24 h chilling. However, there was also a significant contribution due to increased L(r) at 24 h chilling so that psi(p) increased to control levels. As a first step in determining the factor(s) responsible for the increase in L(r), cDNA microarrays were used to quantify the transcript levels of eight aquaporins obtained from mature root tissue at 24 h chilling. None of these were significantly up-regulated, suggesting that the increase in L(r) was not due to regulation of these aquaporins at the transcriptional level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amelioration of chilling-induced water stress by abscisic Acid-induced changes in root hydraulic conductance.

Pretreatment of soybean (Glycine max L. var Ransom) root systems with abscisic acid (ABA) ameliorates the deleterious effect of low temperatures on root hydraulic conductance. ABA treatment of root systems subsequently chilled to 10 degrees C with shoots at 25 degrees C resulted in higher leaf water potentials and lower stomatal resistances. If the root systems are left at 25 degrees C, ABA cau...

متن کامل

Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying.

Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system expose...

متن کامل

A Hydraulic Model Is Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water Status1[C][W][OPEN]

Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1–2 h). The morni...

متن کامل

A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status.

Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morni...

متن کامل

Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration.

Root hydraulic conductivity in plants (Lp(r)) exhibits large variations in response to abiotic stimuli. In this study, we investigated the impact of dynamic, aquaporin-mediated changes of Lp(r) on leaf growth, water potential, and water flux throughout the plant. For this, we manipulated Lp(r) by subjecting roots to four independent treatments, with aquaporin inhibitors applied either to transp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 403  شماره 

صفحات  -

تاریخ انتشار 2004